

不

CARLSON SCHOOL of management

University of Minnesota

Predicting Private Market Twin Cities Rents

Final Presentation

April 25, 2019

Henrik Kowalkowski, Robert Lu, Will Thomas, Xiyang Xu, Xander Yang

Today's Discussion

Given Scope Final Project Scope

Brief overview of the project definition process

Dashboard

□ A walkthrough, use case of the rental prediction dashboard

D Model Review

Data quality, model selection, model validation

Deployment

Hosting the dashboard and transferring the tool

Potential Future Work

General Refreshing the data, adding features

Appendix

How project scope has evolved over time

How we're helping HousingLink and advocates achieve their mission

Solution

- Aggregation of multiple private and public data sources to create:
 - Historical rents for location of interest
 - Predicted rents for next 3-year period
- Interactive dashboard with multiple visualizations
 for different analyses and geographies

• Focus on maintenance (e.g., updating with future data)

Predictions are built from user and fixed inputs

How we're helping HousingLink and advocates achieve their mission

Solution

- Aggregation of multiple private and public data sources to create:
 - Historical rents for location of interest
 - **Predicted rents** for next 3-year period
- Interactive dashboard with multiple visualizations for different analyses and geographies

• Focus on maintenance (e.g., updating with future data)

Benefits

- Rent prices can inform policy discussions and investment decisions
- Robust & accurate 3-year predictions
- A centralized dataset to explore further

Dashboard Demonstration

CARLSON SCHOOL of management

UNIVERSITY OF MINNESOTA

CARLSON ANALYTICS LAB

Understanding the Process

The process is sequential as each stage relies on the last to produce robust results

We hypothesized education, population, macroeconomics and investment drive rents

Of those influential factors we collected these variables as proxies

Variable Name	Source
Average Annual Household Income	American Community Survey
Percent Bachelor's Attained	American Community Survey
Population Growth Rate	American Community Survey
Weighted Median Rent	HousingLink
Subsidized Units at Different AMI Levels	HousingLink
Annual Residential Permit Value (\$)	Metropolitan Council
Annual Non Residential Permit Value (\$)	Metropolitan Council
Small Area Housing Estimates	Metropolitan Council
U3 Unemployment Rate	St. Louis Federal Reserve
S&P 500 Index Value	St. Louis Federal Reserve

We collected, cleaned and then aggregated the data from the tract level

We tested 4 different learning models across 7 different geographies to find the best model

Support vector regression minimizes error across different geographic levels

Supervised Learning Model	Avg. Difference from Actual
Baseline	\$143.88 24% better than baseline
Lasso Regression	\$138.13
K-Nearest Neighbors Regression	\$129.53
Random Forest Regression	\$121.51 10% better than next best learning model
Support Vector Regression	\$110.22

Rent and education give the most predictive power while keeping the model simple

Variable Name	Source
Average Annual Household Income	American Community Survey
Percent Bachelor's Attained	American Community Survey
Population Growth Rate	American Community Survey
Weighted Median Rent	HousingLink
Subsidized Units at Different AMI Levels	HousingLink
Annual Residential Permit Value (\$)	Metropolitan Council
Annual Non Residential Permit Value (\$)	Metropolitan Council
Small Area Housing Estimates	Metropolitan Council
U3 Unemployment Rate	St. Louis Federal Reserve
S&P 500 Index Value	St. Louis Federal Reserve

Model performance in Longfellow illustrates potential future accuracy

Downtown illustrates that predictions are not linear extrapolation

Our dashboard is driven by R Studio and hosted by R Shiny

Benefits

Free tier, 25 hours per month

Fast, responsive performance

Refresh without altering code

User metrics and system up time

The opportunity to increase resources and available hours at any time

The tool works because each step is carefully built off the last

CARLSON SCHOOL of management

UNIVERSITY OF MINNESOTA

CARLSON ANALYTICS LAB

Final Logistics and Next Steps

Deployment Plan

Possible future enhancements

Enhancement	Difficulty
Refresh data with 2018 values	Moderate
Handle 2020 census tract redefinitions	High
Allow users to export data from dashboard	Moderate
Embed the app within a website	Moderate
Explore causal relationship between affordable housing and market units in relation to rent further	High

CARLSON SCHOOL

University of Minnesota

Thank You

CARLSON SCHOOL of management

UNIVERSITY OF MINNESOTA

CARLSON ANALYTICS LAB

Appendix

How does a simple predictive model work?

We fit a line on the values of education and rent that we have observed

This gives us slopes or "effects" for the values

education = \$200 "for every 1% increase in education rent increases by 200 * 1% dollars"

rent = \$1.2 "for every \$1 increase in previous rent, future rent
increases by \$1.2"

When we get an unseen data point e.g. education = 90% and rent = \$800 we just multiply each value by its slope and add them together:

200 * (0.9) + 1.2 * (800) = \$1,140 (prediction)

Dashboard User Guide [Video]

A brief walkthrough of the dashboard and its features

https://youtu.be/9Rix05p2n9c

HousingLink Rent Predictor User Guide

